题目内容

给定两个长度为1的平面向量
OA
OB
,它们的夹角为90°,如图所示,点C在以O为圆心的圆弧AB上运动,若
CO
=x
OA
+y
OB
,其中x,y∈R,则x+y的最大值是(  )
A.1B.
2
C.
3
D.2

∵点C在以O为圆心的圆弧AB上运动,
∴可以设圆的参数方程x=cosθ,y=sinθ,θ∈[0°,90°]
∴x+y=cosθ+sinθ=
2
sin(θ+
π
4
)

∵θ∈[0°,90°]
θ+
π
4
∈[45°,135°]

∴x+y的最大值是
2
,当三角函数取到1时成立.
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网