题目内容
【题目】有一个长方形木块,三个侧面积分别为8,12,24,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为( )
A.2B.C.4D.
【答案】B
【解析】
先求长方体从同一顶点出发的三条棱的长度,从而可得正四面体模型棱长的最大值.
设长方体从同一顶点出发的三条棱的长分别为,则,故,
若能从该长方体削得一个棱长最长的正四面体模型,
则该四面体的顶点必在长方体的面内,
过正四面体的顶点作垂直于长方体的棱的垂面切割长方体,
含正四面体的几何体必为正方体, 故正四面体的棱长为正方体的面对角线的长,
而从长方体切割出一个正方体,使得面对角线的长最大,
需以最小棱长为切割后的正方体的棱长切割才可,
故所求的正四面体模型棱长的最大值.
故选:B.
练习册系列答案
相关题目