题目内容
求曲线y=在矩阵作用下变换所得的图形对应的曲线方程.
x=
解析
已知复平面内平行四边形ABCD,点A 对应的复数为向量对应的复数为向量对应的复数为(1)求点C,D对应的复数;(2)求平行四边形ABCD的面积.
已知矩阵A=,若点P(1,1)在矩阵A对应的变换作用下得到点P′(0,-8).(1)求实数a的值;(2)求矩阵A的特征值.
二阶矩阵M对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6).(1)求矩阵M;(2)若直线l在此变换下所变换成的直线的解析式l′:11x-3y-68=0,求直线l的方程.
二阶矩阵M对应的变换将点(1,一1)与(-2,1)分别变换成点(-1,一1)与(0,一2).①求矩阵M;②设直线l在变换M的作用下得到了直线m:x-y=4,求l的方程.
已知线性变换:对应的矩阵为,向量β.(Ⅰ)求矩阵的逆矩阵;(Ⅱ)若向量α在作用下变为向量β,求向量α.
在直角坐标系中,已知△ABC的顶点坐标为A,B,C.求△ABC在矩阵作用下变换所得到的图形的面积.
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.
曲线x2-4y2=16在y轴方向上进行伸缩变换,伸缩系数k=2,求变换后的曲线方程.