题目内容

如图,正方体ABCDA1B1C1D1的棱长为1,PQ分别是线段AD1BD上的点,且D1PPA=DQQB=5∶12.

求证PQ∥平面CDD1C1

求证PQAD;.

【小题1】在平面AD1内,作PP1∥AD与DD1交于点P1,在平面AC内,作

QQ1∥BC交CD于点Q1,连结P1Q1.

    ∵ ,     ∴PP1QQ1 .?

由四边形PQQ1P1为平行四边形,   知PQ∥P1Q1

而P1Q1平面CDD1C1,  所以PQ∥平面CDD1C1?

【小题1】AD⊥平面D1DCC1,    ∴AD⊥P1Q1,?

又∵PQ∥P1Q1,   ∴AD⊥PQ.?


解析:

【小题1】在平面AD1内,作PP1∥AD与DD1交于点P1,在平面AC内,作

QQ1∥BC交CD于点Q1,连结P1Q1.

    ∵ ,     ∴PP1QQ1 .?

由四边形PQQ1P1为平行四边形,   知PQ∥P1Q1

而P1Q1平面CDD1C1,  所以PQ∥平面CDD1C1?

【小题1】AD⊥平面D1DCC1,    ∴AD⊥P1Q1,?

又∵PQ∥P1Q1,   ∴AD⊥PQ.?

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网