题目内容
14.如图所示,表示阴影部分的二元一次不等式组是( )A. | $\left\{\begin{array}{l}{x+1>0}\\{2x+y<2}\\{y≥-2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+1≥0}\\{2x+y≤2}\\{y>-2}\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}{x+1≥0}\\{2x+y<2}\\{y>-2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+1<0}\\{2x+y<2}\\{y>-2}\end{array}\right.$ |
分析 由图可知阴影部分在直线x=-1的右侧,在直线y=-2的上侧,再结合与原点同侧得到2x+y<2,则表示阴影部分的二元一次不等式组可求.
解答 解:由图可知,
阴影部分在直线x=-1的右侧(x+1>0),在直线y=-2的上侧(y>-2),且与原点(0,0)在直线$\frac{x}{1}+\frac{y}{2}=1$,即2x+y=2的同侧.
∵原点坐标满足2x+y<2,∴阴影部分点的坐标满足2x+y<2,
则表示阴影部分的二元一次不等式组是$\left\{\begin{array}{l}{x+1>0}\\{2x+y<2}\\{y≥-2}\end{array}\right.$,
故选:A.
点评 本题考查简单的线性规划,考查了二元一次不等式组所表示的平面区域,是基础题.
练习册系列答案
相关题目
4.设sinx+siny=$\frac{\sqrt{2}}{2}$,则cosx+cosy的取值范围是( )
A. | [0,$\frac{\sqrt{14}}{2}$] | B. | [-$\frac{\sqrt{14}}{2}$,0] | C. | [-$\frac{\sqrt{14}}{2}$,$\frac{\sqrt{14}}{2}$] | D. | [-$\frac{1}{2}$,$\frac{7}{2}$] |
2.sin$\frac{16π}{3}$的值为( )
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
9.某商场为一种跃进商品进行合理定价,将该商品按事先拟定的价格进行试销,得到如下数据:
(Ⅰ)按照上述数据,求四归直线方程$\widehat{y}$=bx+a,其中b=-20,a=$\widehat{y}$-b$\widehat{x}$;
(Ⅱ)预计在今后的销售中,销量与单位仍然服从(Ⅰ)中的关系,若该商品的成本是每件7.5元,为使商场获得最大利润,该商品的单价应定为多少元?(利润=销售收入-成本)
单位x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(Ⅱ)预计在今后的销售中,销量与单位仍然服从(Ⅰ)中的关系,若该商品的成本是每件7.5元,为使商场获得最大利润,该商品的单价应定为多少元?(利润=销售收入-成本)
3.为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:
(1)分别求甲、乙两运动员最大速度的平均数${\overline X_甲}$,${\overline X_乙}$及方差${s_甲}^2$,${s_乙}^2$;
(2)根据(1)所得数据阐明:谁参加这项重大比赛更合适.
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(2)根据(1)所得数据阐明:谁参加这项重大比赛更合适.