题目内容

给出下列四个命题中:
①底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
②与不共面的四点距离都相等的平面共有4个.
③正四棱锥侧面为锐角三角形;
④椭圆中,离心率e趋向于0,则椭圆形状趋向于扁长.
其中所有真命题的序号是
分析:①根据正三棱锥的定义判断.
②四个点在平面同侧不可能存在与空间不共面四点距离相等的平面,那么可分为一个点在平面一侧,另三个点在另一侧,中截面满足条件,这样的情形有4个,还有一类是二个点在平面一侧,另两个点在另一侧,这样满足条件的平面有三个,即可求出所有满足条件的平面.
③可由侧面中等腰三角形定义分析,三角形底角不会为钝角,若顶角为钝角,则构不成正四棱锥.
④在椭圆中,e越接近于1,则c越接近于a,从而b越小,因此,椭圆越扁;反之,e越接近于0,c越接近于0,从而b越接近于a,这时椭圆就接近于圆.所以椭圆离心率越大,它越扁.利用此规律即可得出结论.
解答:解:①显然不对,比如三条侧棱中仅有一条不与底面边长相等的情况,侧面都是等腰三角形的三棱锥但不是正三棱锥.
②一个点在平面一侧,另三个点在另一侧,这样满足条件的平面有四个,都是中截面,如图,二个点在平面一侧,另两个点在另一侧,这样满足条件的平面有三个,如图,
故与不共面的四点距离都相等的平面共有7个;故②错;
③侧面三角形底角不会为钝角,若顶角为钝角,则构不成正四棱锥,所以是锐角三角形,故③正确.
④椭圆中,离心率e趋向于0,这时椭圆就接近于圆,故④错.
故答案为:③.
点评:本题主要考查命题的真假判断与应用,棱锥的结构特征及棱锥的分类、椭圆的几何性质等,考查很全面,要求掌握要熟练,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网