题目内容
已知函数f(x)=x3-3ax(a∈R),若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,则a的取值范围为分析:首先分析对任意的m直线x+y+m=0都不是曲线y=f(x)的切线的含义,即可求出函数f(x)=x3-3ax(a∈R)的导函数,使直线与其不相交即可.
解答:解:f(x)=x3-3ax(a∈R),则f′(x)=3x2-3a
若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,则直线的斜率为-1,f(x)′=3x2-3a与直线x+y+m=0没有交点,
又抛物线开口向上则必在直线上面,即最小值大于直线斜率,
则当x=0时取最大值,-3a>-1,
则a的取值范围为a<
即答案为a<
.
若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,则直线的斜率为-1,f(x)′=3x2-3a与直线x+y+m=0没有交点,
又抛物线开口向上则必在直线上面,即最小值大于直线斜率,
则当x=0时取最大值,-3a>-1,
则a的取值范围为a<
1 |
3 |
即答案为a<
1 |
3 |
点评:此题考查了函数与方程的综合应用,以及函数导函数的计算,属于综合性问题,计算量小但有一定的难度,属于中等题.
练习册系列答案
相关题目
已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
)的部分图象如图所示,则f(x)的解析式是( )
π |
2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|