题目内容

【题目】在平面直角坐标系xOy中,直线x+y﹣2=0在矩阵A= 对应的变换作用下得到的直线仍为x+y﹣2=0,求矩阵A的逆矩阵A1

【答案】解:在直线x+y﹣2=0上取两点M(2,0),M(0,2).M,N在矩阵M,N对应的变换作用下分别对应于点M′,N′.

= ,∴M′的坐标为(2,2b);

= ,∴N′的坐标为(2a,4).

由题意,M′、N′在直线x+y﹣2=0上,

解得a=﹣1,b=0.

∴A=

∴A1=


【解析】在直线x+y﹣2=0上取两点M(2,0),M(0,2). 在矩阵M,N对应的变换作用下分别对应于点M′,N′.推导出M′、N′的坐标,由题意,M′、N′在直线x+y﹣2=0上,列出方程组求出A= ,由此能求出矩阵A的逆矩阵A1

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网