题目内容
如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M为AD中点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240057576002650.png)
(Ⅰ) 证明
;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值为
,求AB的长.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240057576002650.png)
(Ⅰ) 证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757615648.png)
(Ⅱ) 若二面角A-BF-D的平面角的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757631313.png)
(Ⅰ).由已知
为正三角形,
;(Ⅱ) AB=
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757646551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757678843.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757693499.png)
试题分析:(Ⅰ).由已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757646551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757678843.png)
(Ⅱ) 方法一:设AB=x.取AF的中点G.由题意得DG⊥AF.
因为平面ABCD⊥平面ADEF,AB⊥AD,所以AB⊥平面ADEF,
所以AB⊥DG.所以DG⊥平面ABF.过G作GH⊥BF,垂足为H,
连结DH,则DH⊥BF,
所以∠DHG为二面角A-BF-D的平面角.在直角△AGD中,AD=2,AG=1,得DG=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757740308.png)
在直角△BAF中,由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757756521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757771529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757787502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757802521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757802514.png)
在直角△DGH中,DG=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757740308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757802514.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757849710.png)
因为cos∠DHG=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757865514.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757631313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757693499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757693499.png)
方法二:设AB=x.以F为原点,AF,FQ所在的直线分别为x轴,y轴建立空间直角坐标系Fxyz.
则F(0,0,0),A(-2, 0,0),E(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757740308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757740308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757974395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757740308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005758177383.png)
因为EF⊥平面ABF,所以平面ABF的法向量可取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005758192324.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005758208351.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240057582391024.png)
所以,可取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005758208351.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757740308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005758286502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005758192324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005758208351.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005758364619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757631313.png)
得x=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757693499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005757693499.png)
方法三:以M为原点,MA, MF所在的直线分别为x轴,y轴建立空间直角坐标系Fxyz.略
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤。本题利用向量简化了证明过程。把证明问题转化成向量的坐标运算,这种方法带有方向性。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目