题目内容
【题目】设函数f(x)=ax2-a-lnx,其中a ∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)确定a的所有可能取值,使得在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).
【答案】(Ⅰ)当时,<0,单调递减;当时,>0,单调递增;(Ⅱ).
【解析】(I)
<0,在内单调递减.
由=0,有.
此时,当时,<0,单调递减;
当时,>0,单调递增.
(II)令=,=.
则=.
而当时,>0,
所以在区间内单调递增.
又由=0,有>0,
从而当时,>0.
当,时,=.
故当>在区间内恒成立时,必有.
当时,>1.
由(I)有,从而,
所以此时>在区间内不恒成立.
当时,令,
当时,,
因此,在区间单调递增.
又因为,所以当时, ,即 恒成立.
综上,.
练习册系列答案
相关题目