题目内容
【题目】已知f(x)是偶函数,当x<0时,f(x)=x(x+1),则当x>0时,f(x)的值为( )
A.x(x﹣1)
B.﹣x(x﹣1)
C.x(x+1)
D.﹣x(x+1)
【答案】A
【解析】解:当x<0时,﹣x>0,∵当x<0时,f(x)=x(x+1)
∴当x<0时,f(﹣x)=﹣x(﹣x+1)=x(x﹣1)
又∵f(x)是偶函数
∴当x>0时,f(x)=f(﹣x)=x(x﹣1)
故选A.
【考点精析】通过灵活运用函数奇偶性的性质,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇即可以解答此题.
练习册系列答案
相关题目
【题目】(导学号:05856270)为考察高中生的性别与喜欢数学课程之间的关系,运用2×2列联表进行检验,经计算K2=7.069,参考下表,则认为“性别与喜欢数学有关”犯错误的概率不超过( )
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
A. 0.1% B. 1% C. 99% D. 99.9%