题目内容

已知四棱台上,下底面对应边分别是a,b,试求其中截面把此棱台侧面分成的两部分面积之比.
设A1B1C1D1是棱台ABCD-A2B2C2D2的中截面,延长各侧棱交于P点.
∵BC=a,B2C2=b∴B1C1=
a+b
2
∵BCB1C1
S△PBC
S△PB1C1
=
a2
(
a+b
2
)
2

S△PB1C1=
(a+b)2
4a2
S△PBC

同理S△PB2C2=
b2
a2
S△PBC

SB1C1CB
SB2C2C1B1
=
S△PB1C1=S△PBC
S△PB2C2-S△PB1C1
=
(a+b)2
4a2
-1
b2
a2
-
(a+b)2
4a2
=
b2+2ab-3a2
3b2-2ab-a2
=
(b+3a)(b-a)
(3b+a)(b-a)
=
b+3a
3b+a

同理:
SABB1A1
SA1B1B2A1
=
SDCC1D1
SD1C1C2D2
=
SADD1A1
SA1D1D2A1
=
b+3a
3b+a

由等比定理,得
S上棱台侧
S下棱台侧
=
3a+b
a+3b

故中截面把此棱台侧面分成的两部分面积之比为:
S上棱台侧
S下棱台侧
=
3a+b
a+3b
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网