题目内容
已知四棱台上,下底面对应边分别是a,b,试求其中截面把此棱台侧面分成的两部分面积之比.


设A1B1C1D1是棱台ABCD-A2B2C2D2的中截面,延长各侧棱交于P点.
∵BC=a,B2C2=b∴B1C1=
∵BC∥B1C1∴
=
∴S△PB1C1=
•S△PBC
同理S△PB2C2=
•S△PBC
∴
=
=
=
=
=
同理:
=
=
=
由等比定理,得
=
故中截面把此棱台侧面分成的两部分面积之比为:
=
.
∵BC=a,B2C2=b∴B1C1=
a+b |
2 |
S△PBC |
S△PB1C1 |
a2 | ||
(
|
∴S△PB1C1=
(a+b)2 |
4a2 |
同理S△PB2C2=
b2 |
a2 |
∴
SB1C1CB |
SB2C2C1B1 |
S△PB1C1=S△PBC |
S△PB2C2-S△PB1C1 |
| ||||
|
b2+2ab-3a2 |
3b2-2ab-a2 |
(b+3a)(b-a) |
(3b+a)(b-a) |
b+3a |
3b+a |
同理:
SABB1A1 |
SA1B1B2A1 |
SDCC1D1 |
SD1C1C2D2 |
SADD1A1 |
SA1D1D2A1 |
b+3a |
3b+a |
由等比定理,得
S上棱台侧 |
S下棱台侧 |
3a+b |
a+3b |
故中截面把此棱台侧面分成的两部分面积之比为:
S上棱台侧 |
S下棱台侧 |
3a+b |
a+3b |

练习册系列答案
相关题目