题目内容

曲线y=2sin(x+
π
3
)cos(x-
π
6
)
和直线y=1在y轴右侧的交点按横坐标从小到大依次记为P1,P2,P3,…,Pn,则|P3P5|为(  )
分析:利用诱导公式,二倍角的余弦函数公式化简表达式,通过求出函数和直线y=1在y轴右侧的交点按横坐标,求出结果.
解答:解:y=2sin(x+
π
3
)cos(x-
π
6
)
=2sin(x+
π
3
)sin(x+
π
3
)
=1-cos(2x+
3
)=1+cos(2x-
π
3
),
y=2sin(x+
π
3
)cos(x-
π
6
)=1

∴cos(2x-
π
3
)=0
∴2x-
π
3
=kπ+
π
2
(k∈N),即x=
1
2
kπ+
12
(k∈N),
则|P3P5|=2π+
12
-π-
12
=π.
故选A.
点评:此题考查了诱导公式,二倍角的余弦函数公式,直线与曲线的相交的性质,求两个函数图象的交点间的距离,关键是要求出交点的坐标,然后根据两点间的距离求法进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网