题目内容
曲线y=2sin(x+
)cos(x-
)和直线y=
在y轴右侧的交点按横坐标从小到大依次记为P1,P2,P3,…,则|P2P6|=( )
π |
4 |
π |
4 |
1 |
2 |
分析:将y=2sin(x+
)cos(x-
)的解析式利用诱导公式,二倍角的余弦函数公式化简得y=sin2x+1,令y=
,解得x=kπ+
±
(k∈N),代入易得|P2P6|的值.
π |
4 |
π |
4 |
1 |
2 |
3π |
4 |
π |
6 |
解答:解:∵y=2sin(x+
)cos(x-
)
=2sin(x-
+
)cos(x-
)
=2cos(x-
)cos(x-
)
=cos[2(x-
)]+1
=cos(2x-
)+1
=sin2x+1,
若y=2sin(x+
)cos(x-
)=
,
∴2x=2kπ+
±
(k∈N),即x=kπ+
±
(k∈N),
则|P2P6|=2π.
故选B
π |
4 |
π |
4 |
=2sin(x-
π |
4 |
π |
2 |
π |
4 |
=2cos(x-
π |
4 |
π |
4 |
=cos[2(x-
π |
4 |
=cos(2x-
π |
2 |
=sin2x+1,
若y=2sin(x+
π |
4 |
π |
4 |
1 |
2 |
∴2x=2kπ+
3π |
2 |
π |
3 |
3π |
4 |
π |
6 |
则|P2P6|=2π.
故选B
点评:此题考查了诱导公式,二倍角的余弦函数公式,直线与曲线的相交的性质,求两个函数图象的交点间的距离,关键是要求出交点的坐标,然后根据两点间的距离求法进行求解.
练习册系列答案
相关题目