题目内容

如图,设是棱长为的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体,则关于此多面体有以下结论:①有个顶点;②有条棱;③有个面;④表面积为;⑤体积为.其中正确的结论是____________.(要求填上所有正确结论的序号)
①②⑤
解:如图,
原来的六个面还在只不过是变成了一个小正方形,再添了八个顶点各对应的一个三角形的面,所以总计6+8=14个面,故③错;
每个正方形4条边,每个三角形3条边,4×6+3×8=48,考虑到每条边对应两个面,所以实际只有×48=24条棱.②正确;
所有的顶点都出现在原来正方体的棱的中点位置,
原来的棱的数目是12,所以现在的顶点的数目是12.
或者从图片上可以看出每个顶点对应4条棱,每条棱很明显对应两个顶点,所以顶点数是棱数的一半即12个.①正确;
三角形和四边形的边长都是a,所以正方形总面积为6××a2=3a2,三角形总面积为8××a2sin60°=a2,表面积(3+)a2,故④错;
体积为原正方形体积减去8个三棱锥体积,每个三棱锥体积为8×3=a2,剩余总体积为a3- a3= a3⑤正确.
故答案为:①②⑤.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网