题目内容
(2012•成都一模)若函数f(x)满足:在定义域D内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)为“1的饱和函数”.有下列函数:
①f(x)=
;②f(x)=2x;
③f(x)=lg(x2+2);
④f(x)=cosπx,
其中你认为是“1的饱和函数”的所有函数的序号为
①f(x)=
1 | x |
③f(x)=lg(x2+2);
④f(x)=cosπx,
其中你认为是“1的饱和函数”的所有函数的序号为
②④
②④
.分析:根据集合M的定义,可根据函数的解析式,f(x0+1)=f(x0)+f(1)构造方程,若方程有根,说明函数符合集合M的定义,若方程无根,说明函数不符号集合M的定义,由此对四个函数逐一进行判断,即可得到答案.
解答:解:(1)D=(-∞,0)∪(0,+∞),
若f(x)=
∈M,则存在非零实数x0,使得
=
+1
即x02+x0+1=0,
因为此方程无实数解,所以函数f(x)=
∉M.
(2)D=R,则存在实数x0,使得2x0+1=2x0+2解得x0=1,因为此方程有实数解,
所以函数f(x)=2x∈M.
(3)若存在x,使f(x+1)=f(x)+f(1)
则lg[(x+1)2+2]=lg(x2+2)+lg3
即2x2-2x+3=0,
∵△=4-24=-20<0,故方程无解.即f(x)=lg(x2+2)∉M
④存在x=
使f(x+1)=cosπ(x+1)=f(x)+f(1)=cosπx+cosπ成立,即f(x)=cosπx∈M;
综上可知②④中的函数属于集合
故答案为:②④
若f(x)=
1 |
x |
1 |
x0+1 |
1 |
x0 |
即x02+x0+1=0,
因为此方程无实数解,所以函数f(x)=
1 |
x |
(2)D=R,则存在实数x0,使得2x0+1=2x0+2解得x0=1,因为此方程有实数解,
所以函数f(x)=2x∈M.
(3)若存在x,使f(x+1)=f(x)+f(1)
则lg[(x+1)2+2]=lg(x2+2)+lg3
即2x2-2x+3=0,
∵△=4-24=-20<0,故方程无解.即f(x)=lg(x2+2)∉M
④存在x=
1 |
3 |
综上可知②④中的函数属于集合
故答案为:②④
点评:本题考查的知识点是元素与集合关系的判断,及其它方程的解法,掌握判断元素与集合关系的方法,即元素是否满足集合的性质是解答本题的关键.
练习册系列答案
相关题目