题目内容
(08年潍坊市六模) (12分) 如图,直三棱柱中,底面是以∠ABC为直角的等腰直角三角形,
AC=2a,=3a,D为的中点,E为的中点.
(1)求直线BE与所成的角;
(2)在线段上是否存在点F,使CF⊥平面,若存在,求出;若不存在,说明理由.
解析:(1)以B为原点,建立如图所示的空间直角坐标系.
∵ AC=2a,∠ABC=90°,
∴ .
∴ B(0,0,0),C(0,,0),A(,0,0),
(,0,3a),(0,,3a),(0,0,3a).
∴ ,,,,,,
∴ ,,,,,.
∴ ,, ∴ ,
∴ . 故BE与所成的角为.
(2)假设存在点F,要使CF⊥平面,只要且.
不妨设AF=b,则F(,0,b),,,,,0,,,,, ∵ , ∴ 恒成立.
或,
故当或2a时,平面.
练习册系列答案
相关题目