题目内容
【题目】设椭圆:的左、右焦点分别为,,离心率为,过点的直线交椭圆于点、(不与左右顶点重合),连结、,已知周长为8.
(1)求椭圆的方程;
(2)若直线的斜率为1,求的面积;
(3)设,且,求直线的方程.
【答案】(1);(2);(3)或
【解析】
(1)由椭圆的离心率公式和椭圆的定义,可得,,再由,,的关系可得,进而得到所求椭圆方程;
(2)求得直线的方程,联立椭圆方程,消去,运用韦达定理,结合的面积为,计算可得所求值;
(3)设直线的方程为,,,联立椭圆方程,运用韦达定理,由,得出,结合,设,所以,,运用韦达定理可求出,进而得到所求直线方程.
(1)解:由题可知,周长为8,
由椭圆的定义,可知的周长等于,
则,所以,
又,所以,,
因此椭圆的方程为.
(2)解:依题意,直线的方程为,
与椭圆方程联立,整理得:,
由韦达定理:,,
.
(3)解:设直线的方程为,,,
直线与椭圆方程联立,
整理得:,
由韦达定理:①,②,
因为,
所以,
即,由,,
得:,
所以,
又,不妨设,所以,,
代入,所以,
所以,整理得,
代入①②,计算得,
所以直线的方程为或.
【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这50人根据其满意度评分值(百分制)按照,,……分成5组,根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示),计算,,,的值分别为( )
组别 | 分组 | 频数 | 频率 |
第1组 | 8 | 0.16 | |
第2组 | ■ | ||
第3组 | 20 | 0.40 | |
第4组 | ■ | 0.08 | |
第5组 | 2 | ||
合计 | ■ | ■ |
A.16,0.04,0.032,0.004B.16,0.4,0.032,0.004
C.16,0.04,0.32,0.004D.12,0.04,0.032,0.04