题目内容

  如图,已知点P是三角形ABC外一点,且底面

,点分别在棱上,且 。  。 

(1)求证:平面

(2)当的中点时,求与平面所成的角的大小;

(3)是否存在点使得二面角为直二面角?并说明理由.

 

【答案】

(1)∵PA⊥底面ABC,∴PA⊥BC.

,∴AC⊥BC.

∴BC⊥平面PAC.

(2)∵D为PB的中点,DE//BC,

又由(Ⅰ)知,BC⊥平面PAC,

∴DE⊥平面PAC,垂足为点E.

∴∠DAE是AD与平面PAC所成的角,

∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,

∴△ABP为等腰直角三角形,∴

∴在Rt△ABC中,,∴.

∴在Rt△ADE中,

与平面所成的角的大小.

(3)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,

又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,

∴∠AEP为二面角的平面角,

∵PA⊥底面ABC,∴PA⊥AC,∴.      

∴在棱PC上存在一点E,使得AE⊥PC,这时

故存在点E使得二面角是直二面角.

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网