题目内容

平面向量也叫二维向量,二维向量的坐标表示及其运算可以推广到n(n≥3)维向量,n维向量可用(x1,x2,x3,x4,…,xn)表示.设
a
=(a1,a2,a3,a4,…,an),
b
=(b1,b2,b3,b4,…,bn),规定向量
a
b
夹角θ的余弦为cosθ=
n
i=1
aibi
(
n
i=1
a
2
i
)(
n
i=1
b
2
i
)
.已知n维向量
a
b
,当
a
=(1,1,1,1,…,1),
b
=(-1,-1,1,1,1,…,1)时,cosθ等于
n-4
n
n-4
n
分析:利用题中对向量运算的推广;利用向量的数量积公式求出两个向量的数量积;利用向量模的坐标公式求出两个向量的模;利用向量的数量积公式表示出夹角余弦,求出夹角的余弦值即可.
解答:解:由题意对运算的推广得
a
b
=1×(-1)+1×(-1)+1×1+…+1×1=n-4

|
a
|=
1+1+1+..+1
=
n
|
b
|=
1+1+1+…+1
=
n

cosθ=
a
b
|
a
||
b
|
=
n-4
n

故答案为:
n-4
n
点评:本题考查向量的数量积公式、考查向量模的公式、考查利用向量的数量积公式求向量夹角、考查新定义的题型关键是理解透新定义.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网