题目内容

(附加题)设函数f(x)的定义域为R,当x<0时,f(x)>1,且对任意的x,y∈R,都有f(x+y)=f(x)f(y).
(1)求f(0),判断函数f(x)的单调性;
( 2 )数列{an}满足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*
A.求数列{an}的通项公式;
B.令bn=(
1
2
)anSn=b1+b2+b3+…bnTn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,试比较Sn
2
3
Tn的大小,并加以证明.
分析:(1)令x=y=0,得f(0)=1或f(0)=0.当f(0)=0时,f(x+y)=f(0)=f(x)f(-x)=0.所以f(x)=0,不成立,故f(0)=1.对任意的x1<x2,由题设知f(x1)>
1
f(-x2)
=
f(0)
f(-x2)
=
f(x2-x2
f(-x 2)
=
f(x2) f(-x2)
f(-x2)
=f(x2),故y=f(x)在R上是单调递减函数.
(2)A.由a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*),知a1=f(0)=1=f(an+1)f(-2-an)=f(an+1-2-an).由单调性可知an+1-2-an=0,由此能求出{an}的通项公式.
B.由题设知bn=(
1
2
)
2n-1
=2×(
1
4
)
n
Sn=
1
4
(1-
1
4n
)
1-
1
4
=
2
3
(1-4-n)
.Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)
=
n
2n+1
.能够得到Sn
2
3
Tn
解答:解:(1)令x=y=0,得f(0)=[f(0)]2
∴f(0)=1或f(0)=0
当f(0)=0时,
∵y=-x时,f(x+y)=f(0)=f(x)f(-x)=0.
∴f(x)=0,不成立,
∴f(0)≠0,
故f(0)=1.
对任意的x1<x2,即x1-x2<0,
∵当x<0时,f(x)>1,
∴f(x1-x2)=f(x1)f(-x2)>1
∴f(x1)>
1
f(-x2)
=
f(0)
f(-x2)
=
f(x2-x2
f(-x 2)
=
f(x2) f(-x2)
f(-x2)
=f(x2),
故y=f(x)在R上是单调递减函数.
(2)A.∵a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*
∴a1=f(0)=1=f(an+1)f(-2-an)=f(an+1-2-an
由单调性可知an+1-2-an=0
即an+1-an=2,
∴{an}是首项为1,公差为2的等差数列,
∴an=1+(n-1)×2=2n-1.
B.∵an=2n-1,bn=(
1
2
)anSn=b1+b2+b3+…bnTn=
1
a1a2
+
1
a2a3
+…+
1
anan+1

bn=(
1
2
)
2n-1
=2×(
1
4
)
n

Sn=
1
4
(1-
1
4n
)
1-
1
4
=
2
3
(1-4-n)

1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)

=
n
2n+1

Sn
2
3
Tn

证明:∵n∈N*
n
2n+1
n
2n
=
1
2

1-4-n
3
4

1-4-n
n
2n+1

Sn=
2
3
(1-4-n)>
2
3
Tn=
2
3
×
n
2n-1

即:Sn
2
3
Tn
点评:本题考查数列与函数据的综合,计算繁琐,难度大,容易出错.解题时要认真审题,仔细挖掘题设中的隐含条件,合理地进行等价转化.注意裂项求和法的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网