题目内容
(附加题)设函数f(x)的定义域为R,当x<0时,f(x)>1,且对任意的x,y∈R,都有f(x+y)=f(x)f(y).
(1)求f(0),判断函数f(x)的单调性;
( 2 )数列{an}满足a1=f(0),且f(an+1)=
(n∈N*)
A.求数列{an}的通项公式;
B.令bn=(
)an,Sn=b1+b2+b3+…bn,Tn=
+
+…+
,试比较Sn与
Tn的大小,并加以证明.
(1)求f(0),判断函数f(x)的单调性;
( 2 )数列{an}满足a1=f(0),且f(an+1)=
1 |
f(-2-an) |
A.求数列{an}的通项公式;
B.令bn=(
1 |
2 |
1 |
a1a2 |
1 |
a2a3 |
1 |
anan+1 |
2 |
3 |
分析:(1)令x=y=0,得f(0)=1或f(0)=0.当f(0)=0时,f(x+y)=f(0)=f(x)f(-x)=0.所以f(x)=0,不成立,故f(0)=1.对任意的x1<x2,由题设知f(x1)>
=
=
=
=f(x2),故y=f(x)在R上是单调递减函数.
(2)A.由a1=f(0),且f(an+1)=
(n∈N*),知a1=f(0)=1=f(an+1)f(-2-an)=f(an+1-2-an).由单调性可知an+1-2-an=0,由此能求出{an}的通项公式.
B.由题设知bn=(
)2n-1=2×(
)n,Sn=
=
(1-4-n).Tn=
(1-
+
-
+…+
-
)=
.能够得到Sn>
Tn.
1 |
f(-x2) |
f(0) |
f(-x2) |
f(x2-x2) |
f(-x 2) |
f(x2) f(-x2) |
f(-x2) |
(2)A.由a1=f(0),且f(an+1)=
1 |
f(-2-an) |
B.由题设知bn=(
1 |
2 |
1 |
4 |
2×
| ||||
1-
|
2 |
3 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n-1 |
1 |
2n+1 |
n |
2n+1 |
2 |
3 |
解答:解:(1)令x=y=0,得f(0)=[f(0)]2,
∴f(0)=1或f(0)=0
当f(0)=0时,
∵y=-x时,f(x+y)=f(0)=f(x)f(-x)=0.
∴f(x)=0,不成立,
∴f(0)≠0,
故f(0)=1.
对任意的x1<x2,即x1-x2<0,
∵当x<0时,f(x)>1,
∴f(x1-x2)=f(x1)f(-x2)>1
∴f(x1)>
=
=
=
=f(x2),
故y=f(x)在R上是单调递减函数.
(2)A.∵a1=f(0),且f(an+1)=
(n∈N*)
∴a1=f(0)=1=f(an+1)f(-2-an)=f(an+1-2-an)
由单调性可知an+1-2-an=0
即an+1-an=2,
∴{an}是首项为1,公差为2的等差数列,
∴an=1+(n-1)×2=2n-1.
B.∵an=2n-1,bn=(
)an,Sn=b1+b2+b3+…bn,Tn=
+
+…+
,
∴bn=(
)2n-1=2×(
)n,
∴Sn=
=
(1-4-n).
∵
=
=
(
-
),
∴Tn=
(1-
+
-
+…+
-
)
=
(1-
)
=
.
∴Sn>
Tn.
证明:∵n∈N*,
∴
<
=
,
1-4-n≥
,
∴1-4-n>
,
∴Sn=
(1-4-n)>
Tn=
×
,
即:Sn>
Tn.
∴f(0)=1或f(0)=0
当f(0)=0时,
∵y=-x时,f(x+y)=f(0)=f(x)f(-x)=0.
∴f(x)=0,不成立,
∴f(0)≠0,
故f(0)=1.
对任意的x1<x2,即x1-x2<0,
∵当x<0时,f(x)>1,
∴f(x1-x2)=f(x1)f(-x2)>1
∴f(x1)>
1 |
f(-x2) |
f(0) |
f(-x2) |
f(x2-x2) |
f(-x 2) |
f(x2) f(-x2) |
f(-x2) |
故y=f(x)在R上是单调递减函数.
(2)A.∵a1=f(0),且f(an+1)=
1 |
f(-2-an) |
∴a1=f(0)=1=f(an+1)f(-2-an)=f(an+1-2-an)
由单调性可知an+1-2-an=0
即an+1-an=2,
∴{an}是首项为1,公差为2的等差数列,
∴an=1+(n-1)×2=2n-1.
B.∵an=2n-1,bn=(
1 |
2 |
1 |
a1a2 |
1 |
a2a3 |
1 |
anan+1 |
∴bn=(
1 |
2 |
1 |
4 |
∴Sn=
2×
| ||||
1-
|
2 |
3 |
∵
1 |
anan+1 |
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
∴Tn=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n-1 |
1 |
2n+1 |
=
1 |
2 |
1 |
2n+1 |
=
n |
2n+1 |
∴Sn>
2 |
3 |
证明:∵n∈N*,
∴
n |
2n+1 |
n |
2n |
1 |
2 |
1-4-n≥
3 |
4 |
∴1-4-n>
n |
2n+1 |
∴Sn=
2 |
3 |
2 |
3 |
2 |
3 |
n |
2n-1 |
即:Sn>
2 |
3 |
点评:本题考查数列与函数据的综合,计算繁琐,难度大,容易出错.解题时要认真审题,仔细挖掘题设中的隐含条件,合理地进行等价转化.注意裂项求和法的灵活运用.
练习册系列答案
相关题目