搜索
题目内容
某中学为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下图的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为________.
试题答案
相关练习册答案
0.97小时
一天平均每人的课外阅读时间应为一天的总阅读时间与学生的比,即
=0.97(小时).
练习册系列答案
精英教程100分攻略系列答案
轻轻松松系列答案
心算口算巧算系列答案
三维数字课堂系列答案
实验报告系列答案
探究活动报告册系列答案
家庭作业系列答案
课堂作业同步练习系列答案
教材完全解读系列答案
课程达标测试卷系列答案
相关题目
为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:
态度
应该取消
应该保留
无所谓
在校学生
2100人
120人
y
人
社会人士
600人
x
人
z
人
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数
ξ
的分布列和数学期望.
为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图3所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.
(1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;
(2)求调查中随机抽取了多少个学生的百米成绩;
(3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.
某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
组号
分组
频数
频率
第1组
5
0.050
第2组
①
0.350
第3组
30
②
第4组
20
0.200
第5组
10
0.100
合计
100
1.00
(1)请先求出频率分布表中①、②位置相应的数据,再在答题卷上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?
某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1~50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
编号
性别
投篮成绩
2
男
90
7
女
60
12
男
75
17
男
80
22
女
83
27
男
85
32
女
75
37
男
80
42
女
70
47
女
60
甲抽取的样本数据
编号
性别
投篮成绩
1
男
95
8
男
85
10
男
85
20
男
70
23
男
70
28
男
80
33
女
60
35
女
65
43
女
70
48
女
60
乙抽取的样本数据
(Ⅰ)观察
乙
抽取的样本数据,若从男同学中抽取两名,求两名男同学中恰有一名非优秀的概率.
(Ⅱ)请你根据
乙
抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
优秀
非优秀
合计
男
女
合计
10
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
0.15
0.10
0.05
0.010
0.005
0.001
2.072
2.706
3.841
6.635
7.879
10.828
(参考公式:
,其中
)
计算下面事件A与事件B的2×2列联表的χ
2
统计量值,得χ
2
≈________,从而得出结论________.
B
总计
A
39
157
196
29
167
196
总计
68
324
392
某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数如下表:
1号
2号
3号
4号
5号
甲组
4
5
x
9
10
乙组
5
6
7
y
9
(1)已知两组技工在单位时间内加工的合格零件平均数为7,分别求出甲、乙两组技工在单位时间内加工的合格零件的方差,并由此分析两组技工的加工水平;
(2)质检部门从该车间甲、乙两组中各随机抽取一名技工,对其加工的零件进行检测,若2人加工的合格零件个数之和超过14,则称该车间“质量合格”,求该车间“质量合格”的概率.
如图是甲、乙两名篮球运动员2013年赛季每场比赛得分的茎叶图,则甲、乙两人比赛得分的中位数之和为
.
下图是2013年某市举行的名师评选活动,七位评委为某位教师打出的分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为( )
7
9
8
4
4
6
4
7
9
3
A. 84,4.84
B. 84,1.6
C. 85,1.6
D. 85,4
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总