题目内容
某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1~50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
甲抽取的样本数据
乙抽取的样本数据
(Ⅰ)观察乙抽取的样本数据,若从男同学中抽取两名,求两名男同学中恰有一名非优秀的概率.
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
(参考公式:,其中)
编号 | 性别 | 投篮成绩 |
2 | 男 | 90 |
7 | 女 | 60 |
12 | 男 | 75 |
17 | 男 | 80 |
22 | 女 | 83 |
27 | 男 | 85 |
32 | 女 | 75 |
37 | 男 | 80 |
42 | 女 | 70 |
47 | 女 | 60 |
编号 | 性别 | 投篮成绩 |
1 | 男 | 95 |
8 | 男 | 85 |
10 | 男 | 85 |
20 | 男 | 70 |
23 | 男 | 70 |
28 | 男 | 80 |
33 | 女 | 60 |
35 | 女 | 65 |
43 | 女 | 70 |
48 | 女 | 60 |
(Ⅰ)观察乙抽取的样本数据,若从男同学中抽取两名,求两名男同学中恰有一名非优秀的概率.
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
| 优秀 | 非优秀 | 合计 |
男 | | | |
女 | | | |
合计 | | | 10 |
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(Ⅰ)=.
(Ⅱ)有95%以上的把握认为投篮成绩与性别有关.
(Ⅲ)甲用的是系统抽样,乙用的是分层抽样. 采用分层抽样方法比系统抽样方法更优.
(Ⅱ)有95%以上的把握认为投篮成绩与性别有关.
(Ⅲ)甲用的是系统抽样,乙用的是分层抽样. 采用分层抽样方法比系统抽样方法更优.
试题分析:(Ⅰ)首先明确“事件”记“两名同学中恰有一名不优秀”为事件A,乙抽取的样本数据中,男同学有4名优秀,记为a,b,c,d,2名不优秀,记为e,f .计算从男同学中抽取两名,总的基本事件有15个,利用列举法确定事件A包含的基本事件数为8,进一步得到=. (Ⅱ)设投篮成绩与性别无关,由乙抽取的样本数据,得列联表,利用“卡方公式”,计算的观测值并与临界值表比较,得到结论.(Ⅲ)对照系统抽样、分层抽样的定义.确定抽样方法,由(Ⅱ)的结论,并且从样本数据能看出投篮成绩与性别有明显差异,得到结论.
试题解析:(Ⅰ)记“两名同学中恰有一名不优秀”为事件A,乙抽取的样本数据中,男同学有4名优秀,记为a,b,c,d,2名不优秀,记为e,f . 1分
乙抽取的样本数据,若从男同学中抽取两名,则总的基本事件有15个, 2分
事件A包含的基本事件有,,,, ,,,,共8个基本事件,所以 =. 4分
(Ⅱ)设投篮成绩与性别无关,由乙抽取的样本数据,得列联表如下:
| 优秀 | 非优秀 | 合计 |
男 | 4 | 2 | 6 |
女 | 0 | 4 | 4 |
合计 | 4 | 6 | 10 |
的观测值4.4443.841, 8分
所以有95%以上的把握认为投篮成绩与性别有关. 9分
(Ⅲ)甲用的是系统抽样,乙用的是分层抽样. 10分
由(Ⅱ)的结论知,投篮成绩与性别有关,并且从样本数据能看出投篮成绩与性别有明显差异,因此采用分层抽样方法比系统抽样方法更优. 12分
练习册系列答案
相关题目