题目内容
【题目】某公司的研发团队,可以进行A、B、C三种新产品的研发,研发成功的概率分别为P(A)= ,P(B)= ,P(C)= ,三个产品的研发相互独立.
(1)求该公司恰有两个产品研发成功的概率;
(2)已知A、B、C三种产品研发成功后带来的产品收益(单位:万元)分别为1000、2000、1100,为了收益最大化,公司从中选择两个产品研发,请你从数学期望的角度来考虑应该研发哪两个产品?
【答案】
(1)解:设A,B,C研发成功分别记为事件A,B,C,且相互独立;
记事件恰有两个产品研发成功为D,
则P(D)=P(A)P(B)P( )+P(A)P(C) +P(B)P(C)P( )
= × × + × × + × ×
=
(2)解:选择A、B两种产品研发时为随机事件X,则X的可能取值为0,1000,2000,3000,
则P(X=0)=P( )P( )= × = ,
P(X=1000)=P(A)P( )= × = ,
P(X=2000)=P( )P(B)= × = ,
(X=3000)=P(A)P(B)= × = ,
则X的分布列为;
X | 0 | 1000 | 2000 | 3000 |
P |
|
|
|
|
X的数学期望为E(X)=0× +1000× +2000× +3000× = ;
选择A、C两种产品研发时为随机事件Y,则Y的可能取值为0,1000,1100,2100,
则P(Y=0)=P( )P( )= × = ,
P(Y=1000)=P(A)P( )= × = ,
P(X=1100)=P( )P(C)= × = ,
P(X=2100)=P(A)P(C)= × = ,
则Y的分布列为;
Y | 0 | 1000 | 1100 | 2100 |
P |
|
|
|
|
Y的数学期望为E(Y)=0× +1000× +1100× +2100× =1330(万元);
选择A、B两种产品研发时为随机事件Z,则Z的可能取值为0,2000,1100,3100,
则P(Z=0)=P( )P( )= × = ,
P(Z=2000)=P(B)P( )= × = ,
P(X=1100)=P( )P(C)= × = ,
P(X=3100)=P(B)P(C)= × = ,
则Z的分布列为;
Z | 0 | 2000 | 1100 | 3100 |
P |
|
|
|
|
Z的数学期望为E(Z)=0× +2000× +1100× +3100× = (万元);
比较知E(Z)最大,即研发B、C两种产品带来的产品收益最大
【解析】(1)设A,B,C研发成功分别记为事件A,B,C,且相互独立;计算恰有两个产品研发成功的概率即可;(2)选择A、B和A、C,B、C对应的两种产品研发的分布列与数学期望,比较得出结论.
【题目】某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如表:
测试指标 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
芯片甲 | 8 | 12 | 40 | 32 | 8 |
芯片乙 | 7 | 18 | 40 | 29 | 6 |
(Ⅰ)试分别估计芯片甲,芯片乙为合格品的概率;
(Ⅱ)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(I)的前提下,
(i)记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列和数学期望;
(ii)求生产5件芯片乙所获得的利润不少于140元的概率.