题目内容
【题目】在正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点.
(1)证明:平面AED⊥平面A1FD1;
(2)在AE上求一点M,使得A1M⊥平面DAE.
【答案】(1)见解析;(2)见解析.
【解析】
(1) 证明建立空间直角坐标系D-xyz,不妨设正方体的棱长为2,
则A(2,0,0),E(2,2,1),F(0,1,0),A1(2,0,2),D1(0,0,2).求出平面AED的法向量为n1
平面A1FD1的法向量n2,由n1·n2=0即可得证.
(2)因为点M在直线AE上,所以可设=λ·=λ·(0,2,1)=(0,2λ,λ),可得M(2,2λ,λ),于是=(0,2λ,λ-2),要使A1M⊥平面DAE,需有A1M⊥AE,即可求出λ
从而确定点M.
(1) 证明建立空间直角坐标系D-xyz,不妨设正方体的棱长为2,
则A(2,0,0),E(2,2,1),F(0,1,0),A1(2,0,2),D1(0,0,2).
设平面AED的法向量为n1=(x1,y1,z1),则
∴2x1=0,2x1+2y1+z1=0.
令y1=1,得n1=(0,1,-2).
同理可得平面A1FD1的法向量n2=(0,2,1).
因为n1·n2=0,所以平面AED⊥平面A1FD1.
(2)因为点M在直线AE上,所以可设=λ·=λ·(0,2,1)=(0,2λ,λ),可得M(2,2λ,λ),
于是=(0,2λ,λ-2),要使A1M⊥平面DAE,需有A1M⊥AE,
所以=(0,2λ,λ-2)·(0,2,1)=5λ-2=0,得λ=.故当AM=AE时,A1M⊥平面DAE.
【题目】某人事部门对参加某次专业技术考试的100人的成绩进行了统计,绘制的频率分布直方图如图所示.规定80分以上者晋级成功,否则晋级失败(满分为100分).
(1)求图中的值;
(2)估计该次考试的平均分 (同一组中的数据用该组的区间中点值代表);
(3)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关.
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
参考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |