题目内容

【题目】在正方体ABCDA1B1C1D1中,EF分别是BB1CD的中点.

(1)证明:平面AED平面A1FD1

(2)AE上求一点M,使得A1M平面DAE

【答案】(1)见解析;(2)见解析.

【解析】

(1) 证明建立空间直角坐标系D-xyz,不妨设正方体的棱长为2,

则A(2,0,0),E(2,2,1),F(0,1,0),A1(2,0,2),D1(0,0,2).求出平面AED的法向量为n1

平面A1FD1的法向量n2,由n1·n2=0即可得证.

(2)因为点M在直线AE上,所以可设=λ·=λ·(0,2,1)=(0,2λ,λ),可得M(2,2λ,λ),于是=(0,2λ,λ-2),要使A1M⊥平面DAE,需有A1M⊥AE,即可求出λ

从而确定点M.

(1) 证明建立空间直角坐标系D-xyz,不妨设正方体的棱长为2,

则A(2,0,0),E(2,2,1),F(0,1,0),A1(2,0,2),D1(0,0,2).

设平面AED的法向量为n1=(x1,y1,z1),则

∴2x1=0,2x1+2y1+z1=0.

令y1=1,得n1=(0,1,-2).

同理可得平面A1FD1的法向量n2=(0,2,1).

因为n1·n2=0,所以平面AED⊥平面A1FD1.

(2)因为点M在直线AE上,所以可设=λ·=λ·(0,2,1)=(0,2λ,λ),可得M(2,2λ,λ),

于是=(0,2λ,λ-2),要使A1M⊥平面DAE,需有A1M⊥AE,

所以=(0,2λ,λ-2)·(0,2,1)=5λ-2=0,得λ=.故当AM=AE时,A1M⊥平面DAE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网