题目内容

某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一直线交,从而得到五边形的市民健身广场,设
(1)将五边形的面积表示为的函数;
(2)当为何值时,市民健身广场的面积最大?并求出最大面积.

(1);(2)当时,到的市民健身广场面积最大,最大面积为.

解析试题分析:(1)根据题意分析可考虑作,垂足为,从而可将五边形的面积转化为梯形与矩形的面积之和,由结合条件,可将梯形的上底,下底与高以及矩形的长和宽都用含的代数式表示出来,从而可得:,再由,可得;(2)由(1)及条件可知,问题就等价于求函数上的最大值,而将其变形后可得:

当且仅当时,“=”成立,从而当时,到的市民健身广场面积最大,最大面积为.
试题解析:(1)如图,作,垂足为
,∴,又由,∴
,∴,     2分


所以,          7分
由于重合时,适合条件,故;   8分

(2)由(1)得:,       10分
∴当且仅当,即时,取得最大值,    13分
即当时,得到的市民健身广场面积最大,最大面积为.     14分
考点:1.函数的运用;2.基本不等式求最值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网