题目内容

(本小题满分12分)
如图1,在平面内,ABCD边长为2的正方形,都是正方形。将两个正方形分别沿ADCD起,使重合于点D1。设直线l过点B且垂直于正方形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设(图2)。

(1)设二面角EACD1的大小为q,当时,求的余弦值;
(2)当时在线段上是否存在点,使平面平面,若存在,求出所成的比;若不存在,请说明理由。



(2)设以D为原点,对DADC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系如图所示。BE =" t " (t>2).
,E(2,2,t)…7分
………9分
设平面的法向量
                                                   ……………………10分
由平面平面,得平面
   ……………………11分
所以:在线段上是存在点,使平面平面所成的比                                      ………………12分

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网