题目内容
(本小题满分12分)
如图,是底部不可到达的一个塔型建筑物,为塔的最高点.现需在对岸测出塔高,甲、乙两同学各提出了一种测量方法,甲同学的方法是:选与塔底在同一水平面内的一条基线,使三点不在同一条直线上,测出及的大小(分别用表示测得的数据)以及间的距离(用表示测得的数据),另外需在点测得塔顶的仰角(用表示测量的数据),就可以求得塔高.乙同学的方法是:选一条水平基线,使三点在同一条直线上.在处分别测得塔顶的仰角(分别用表示测得的数据)以及间的距离(用表示测得的数据),就可以求得塔高.
请从甲或乙的想法中选出一种测量方法,写出你的选择并按如下要求完成测量计算:①画出测量示意图;②用所叙述的相应字母表示测量数据,画图时按顺时针方向标注,按从左到右的方向标注;③求塔高.
【答案】
①②见解析 ③
【解析】本小题属于解三角形问题,解三角形要具备三个条件,并且其中有一个条件为边.然后再根据给的三个条件确定是选用正弦定理还是余弦定理.
一般如果知道两角及一边或两边及一边的对角考虑采用正弦定理.如果知道三边或两边及夹角考虑余弦定理.
解:选甲:示意图1
图1 ----------4分
在中,.由正弦定理得.
所以.
在中,.---------12分
选乙:图2
图2----------4分
在中,,由正弦定理得,
所以.
在中,.---------12分
练习册系列答案
相关题目