题目内容
【题目】如图所示的多面体中,是菱形, 是矩形,平面,,,.
(1)求证:平面平面 ;
(2)在线段上取一点,当二面角的大小为时,求.
【答案】(1)见证明;(2)
【解析】
(1)取AE的中点M,先证明∠AMC就是二面角A-EF-C的平面角,再证明,即证平面平面 ;(2)以AC与BD交点O为坐标原点,0A、OB分别为轴建立直角坐标系,设,利用向量法求得,解方程即得.
解:(1)取AE的中点M.由于ED⊥面ABCD,ED//FB,
∴DE⊥AD,ED⊥DC,FB⊥BC,FB⊥AB,又ABCD是菱形,BDEF是矩形,
所以△ADE,△CDE,△ABF,△CBF是全等直角三角形,AE=AF,CE=CF,
所以AM⊥EF,CM⊥EF,∠AMC就是二面角A-EF-C的平面角
经计算,,
所以,即.
所以平面AEF⊥平面CEF.
(2)以AC与BD交点O为坐标原点,0A、OB分别为轴建立直角坐标系,由AD=BD=2,则A(,0,0),M(0,O,),C(﹣,0,0),E(0,﹣1,),
F(0,1,),.
平面CEF的一个法向量.
设,则,
,
设平面NEF的法向量,则
得,
令,则,得.
因为二面角的大小为60°,
所以,
整理得,解得
所以.
【题目】西安市自2017年5月启动对“车不让人行为”处罚以来,斑马线前机动车抢行不文明行为得以根本改变,斑马线前礼让行人也成为了一张新的西安“名片”.
但作为交通重要参与者的行人,闯红灯通行却频有发生,带来了较大的交通安全隐患及机动车通畅率降低,交警部门在某十字路口根据以往的检测数据,得到行人闯红灯的概率约为0.4,并从穿越该路口的行人中随机抽取了200人进行调查,对是否存在闯红灯情况得到列联表如下:
30岁以下 | 30岁以上 | 合计 | |
闯红灯 | 60 | ||
未闯红灯 | 80 | ||
合计 | 200 |
近期,为了整顿“行人闯红灯”这一不文明及项违法行为,交警部门在该十字路口试行了对闯红灯行人进行经济处罚,并从试行经济处罚后穿越该路口行人中随机抽取了200人进行调查,得到下表:
处罚金额(单位:元) | 5 | 10 | 15 | 20 |
闯红灯的人数 | 50 | 40 | 20 | 0 |
将统计数据所得频率代替概率,完成下列问题.
(Ⅰ)将列联表填写完整(不需写出填写过程),并根据表中数据分析,在未试行对闯红灯行人进行经济处罚前,是否有99.9%的把握认为闯红灯与年龄有关;
(Ⅱ)当处罚金额为10元时,行人闯红灯的概率会比不进行处罚降低多少;
(Ⅲ)结合调查结果,谈谈如何治理行人闯红灯现象.
参考公式: ,其中
参考数据:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.132 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |