ÌâÄ¿ÄÚÈÝ
ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªµãA£¨1£¬0£©£¬µãBÔÚÖ±Ïßl£ºx=-1ÉÏÔ˶¯£¬¹ýµãBÓël´¹Ö±µÄÖ±ÏߺÍÏ߶ÎABµÄ´¹Ö±Æ½·ÖÏßÏཻÓÚµãM£®£¨1£©Ç󶯵ãMµÄ¹ì¼£EµÄ·½³Ì£»
£¨2£©¹ý£¨1£©ÖеĹ켣EÉϵĶ¨µãP£¨x0£¬y0£©£¨y0£¾0£©×÷Á½ÌõÖ±Ïß·Ö±ðÓë¹ì¼£EÏཻÓÚC£¨x1£¬y1£©£¬D£¨x2£¬y2£©Á½µã£®ÊÔ̽¾¿£ºµ±Ö±ÏßPC£¬PDµÄбÂÊ´æÔÚÇÒÇãб½Ç»¥²¹Ê±£¬Ö±ÏßCDµÄбÂÊÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³öÕâ¸ö¶¨Öµ£»Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÉèµãMµÄ×ø±êΪ£¨x£¬y£©£¬ÓÉÌâÉèÖª£¬|MB|=|MA|£®¸ù¾ÝÅ×ÎïÏߵĶ¨Òå¿ÉÖªµãMµÄ¹ì¼£ÎªÅ×ÎïÏߣ¬¸ù¾Ý½¹µãºÍ×¼Ïß·½³Ì£¬Ôò¿ÉµÃÅ×ÎïÏß·½³Ì£»
£¨2£©Éè³öPC£¬PDµÄ·½³Ì£¬´úÈëÅ×ÎïÏß·½³Ì£¬Çó³öC£¬DµÄ×Ý×ø±ê£¬±íʾ³öÖ±ÏßCDµÄбÂÊ£¬¼´¿ÉµÃ³ö½áÂÛ£®
£¨2£©Éè³öPC£¬PDµÄ·½³Ì£¬´úÈëÅ×ÎïÏß·½³Ì£¬Çó³öC£¬DµÄ×Ý×ø±ê£¬±íʾ³öÖ±ÏßCDµÄбÂÊ£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð£º½â£º£¨1£©ÉèµãMµÄ×ø±êΪ£¨x£¬y£©£¬ÓÉÌâÉèÖª£¬|MB|=|MA|£®
ËùÒÔ¶¯µãMµÄ¹ì¼£EÊÇÒÔA£¨1£¬0£©Îª½¹µã£¬Ö±Ïßl£ºx=-1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬
ËùÒÔÆä·½³ÌΪy2=2x£»
£¨2£©ÓÉÌâÒ⣬ÉèPC£ºx=my+b£¬´úÈ루x0£¬y0£©£¬¿ÉµÃb=x0-my0£¬ËùÒÔx=my+x0-my0£¬´úÈëy2=2x£¬¿ÉµÃy2=2£¨my+x0-my0£©£¬¼´y2-2my-2x0+2my0=0£¬
¡ày0+y1=2m£¬¡ày1=2m-y0£¬
ͬÀí£¬ÉèPD£ºx=-my+n£¬´úÈ루x0£¬y0£©£¬¿ÉµÃn=x0+my0£¬ËùÒÔx=-my+x0+my0£¬´úÈëy2=2x£¬¿ÉµÃy2=2£¨-my+x0+my0£©£¬¼´y2+2my-2x0-2my0=0£¬
¡ày0+y2=2m£¬¡ày2=-2m-y0£¬
ÓÖkCD=
=
=
=-
£¬¡àÖ±ÏßCDµÄбÂÊÊǶ¨Öµ£®
ËùÒÔ¶¯µãMµÄ¹ì¼£EÊÇÒÔA£¨1£¬0£©Îª½¹µã£¬Ö±Ïßl£ºx=-1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬
ËùÒÔÆä·½³ÌΪy2=2x£»
£¨2£©ÓÉÌâÒ⣬ÉèPC£ºx=my+b£¬´úÈ루x0£¬y0£©£¬¿ÉµÃb=x0-my0£¬ËùÒÔx=my+x0-my0£¬´úÈëy2=2x£¬¿ÉµÃy2=2£¨my+x0-my0£©£¬¼´y2-2my-2x0+2my0=0£¬
¡ày0+y1=2m£¬¡ày1=2m-y0£¬
ͬÀí£¬ÉèPD£ºx=-my+n£¬´úÈ루x0£¬y0£©£¬¿ÉµÃn=x0+my0£¬ËùÒÔx=-my+x0+my0£¬´úÈëy2=2x£¬¿ÉµÃy2=2£¨-my+x0+my0£©£¬¼´y2+2my-2x0-2my0=0£¬
¡ày0+y2=2m£¬¡ày2=-2m-y0£¬
ÓÖkCD=
y2-y1 |
x2-x1 |
2 |
y1+y2 |
2 |
2m-y0-2m-y0 |
1 |
y0 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÅ×ÎïÏߵıê×¼·½³ÌºÍÖ±ÏßÓëÅ×ÎïÏߵĹØϵ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÕýÈ·Éè³öÖ±Ïߵķ½³ÌÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿