题目内容

设{an}(n∈N*)是等差数列,Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是(  )

A.d<0 B.a7=0
C.S9>S5D.S6与S7均为Sn的最大值

C

解析试题分析:根据题设条件且S5<S6,S6=S7>S8,则可判断A的正确性;∵且S5<S6,S6=S7>S8,则a7=0,可判断B正确;∵在等差数列中Sn等差数列的前n项和公式存在最大值可判断数列的单调性,这样可判断D的正确性;利用数列的前n项和定义与等差数列的性质,来判断D的正确性解:∵S5<S6,S6=S7>S8,则A正确;∵S6=S7,∴a7=0,∴B正确;∵S5<S6,S6=S7>S8,则a6>0,a7=0,a8<0,∴d<0,A正确∵a6+a7+a8+a9=2(a7+a8)<0,∴S9<S5,C错误.故选C
考点:命题的真假, 等差数列的前n项和公式
点评:本题借助考查命题的真假判断,考查等差数列的前n项和公式及等差数列的性质.在等差数列中Sn存在最大值的条件是:a1>0,d<0.一般两种解决问题的思路:项分析法与和分析法

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网