题目内容

如图,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(1)求证:A1C⊥平面BCDE;
(2)过点E作截面EFH∥平面A1CD,分别交CB于F,A1B于H,求截面EFH的面积;
(3)线段BC上是否存在点P,使平面A1DP与平面A1BE成600的角?说明理由.
分析:(1)证明DE⊥平面A1CD,可得A1C⊥DE,利用A1C⊥CD,CD∩DE=D,即可证明A1C⊥平面BCDE;
(2)过点E作EF∥CD交BC于F,过点F作FH∥A1C交A1B于H,连结EH,则截面EFH∥平面A1CD,从而可求截面EFH的面积;
(3)假设线段BC上存在点P,使平面A1DP与平面A1BE成60°的角,建立坐标系,利用向量知识,结合向量的夹角公式,即可求出结论.
解答:(1)证明:∵CD⊥DE,A1D⊥DE,CD∩A1D=D,
∴DE⊥平面A1CD.
又∵A1C?平面A1CD,∴A1C⊥DE.
又A1C⊥CD,CD∩DE=D,
∴A1C⊥平面BCDE…(4分)
(2)解:过点E作EF∥CD交BC于F,过点F作FH∥A1C交A1B于H,连结EH,则截面EFH∥平面A1CD.
因为四边形EFCD为矩形,所以EF=CD=1,CF=DE=4,从而FB=2,HF=
1
3
A1C=
3
3

∵A1C⊥平面BCDE,FH∥A1C,
∴HF⊥平面BCDE,∴HF⊥FE,
S△HFE=
3
6
.…(8分)
(3)解:假设线段BC上存在点P,使平面A1DP与平面A1BE成60°的角.
设P点坐标为(a,0,0),则a∈[0,6].
如图建系C-xyz,则D(0,1,0),A(0 ,  0 ,  
3
)
,B(6,0,0),E(4,1,0).
A1B
=(6,0,-
3
)
BE
=(-2 ,1,0)

设平面A1BE法向量为
n
=(x ,  y ,  z)

A1B
n
=0
BE
n
=0
6x-
3
z=0
-2x+y=0
z=2
3
x
y=2x
,∴
n
=(1,2,2
3
)

设平面A1DP法向量为
n1
=(x1 ,  y1 ,  z1)
,因为
A1P
=(a,0  -
3
)
DP
=(a, -1,0)

ax1-
3
z1=0
ax1-y1=0
,∴
z1=
3
3
ax1
y1=ax1
,∴
n1
=(3, 3a, 
3
a)

cos<
n1
n
>=
n1
n
|
n1
|•|
n
|
=
3a+12
17
12a2+9
=
1
2
,∴5656a2-96a-141=0,
解得a=
24±
717
28

∵0<a<,6∴a=
24+
717
28

所以存在线段BC上存在点P,使平面A1DP与平面A1BE成60°的角.…(12分)
点评:本题考查线面平行,考查线面角,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网