题目内容

已知数列an是各项均不为0的等差数列,公差为d,Sn为其前n项和,且满足an2=S2n-1,n∈N*.数列bn满足bn=
1anan+1
,Tn为数列bn的前n项和.
(1)求a1、d和Tn
(2)若对任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求实数λ的取值范围;
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.
分析:(1)在an2=S2n-1中,令n=1,n=2,得
a12=S1
a22=S3
,由此能求出求a1、d和Tn
(2)①当n为偶数时,要使不等式λTn<n+8•(-1)n恒成立,λ需满足λ<25.②当n为奇数时,要使不等式λTn<n+8•(-1)n恒成立,λ需满足λ<-21.综合①、②可得λ的取值范围.
(3)T1=
1
3
, Tm=
m
2m+1
, Tn=
n
2n+1
,若T1,Tm,Tn成等比数列,则
m2
4m2+4m+1
=
n
6n+3
.由
m2
4m2+4m+1
=
n
6n+3
,可得-2m2+4m+1>0,由此能求出求出所有m,n的值.
解答:解:(1)在an2=S2n-1中,令n=1,n=2,
a12=S1
a22=S3
a12=a1
(a1+d)2=3a1+3d
(2分)
解得a1=1,d=2,(3分)∴an=2n-1.∵bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,∴Tn=
1
2
(1-
1
3
+
1
3
-
1
5
++
1
2n-1
-
1
2n+1
)=
n
2n+1
.(5分)
(2)①当n为偶数时,要使不等式λTn<n+8•(-1)n恒成立,即需不等式λ<
(n+8)(2n+1)
n
=2n+
8
n
+17
恒成立.(6分)∵2n+
8
n
≥8
,等号在n=2时取得.∴此时λ需满足λ<25.(7分)
②当n为奇数时,要使不等式λTn<n+8•(-1)n恒成立,即需不等式λ<
(n-8)(2n+1)
n
=2n-
8
n
-15
恒成立.(8分)∵2n-
8
n
是随n的增大而增大,∴n=1时2n-
8
n
取得最小值-6.∴此时λ需满足λ<-21.(9分)
综合①、②可得λ的取值范围是λ<-21.(10分)
(3)T1=
1
3
, Tm=
m
2m+1
, Tn=
n
2n+1

若T1,Tm,Tn成等比数列,则(
m
2m+1
)2=
1
3
(
n
2n+1
)
,即
m2
4m2+4m+1
=
n
6n+3
.(11分)
m2
4m2+4m+1
=
n
6n+3
,可得
3
n
=
-2m2+4m+1
m2
>0

即-2m2+4m+1>0,(12分)∴1-
6
2
<m<1+
6
2
.(13分)
又m∈N,且m>1,所以m=2,此时n=12.
因此,当且仅当m=2,n=12时,数列 {Tn}中的T1,Tm,Tn成等比数列.(14分)
点评:本题考查了等差数列、等比数列的概念及其性质,以及数列的求和、利用均值不等式求最值等知识;考查了学生的函数思想方法,及其推理论证和探究的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网