题目内容

【题目】学校举办的集体活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得1分、2分、3分的奖励,游戏还规定,当选手闯过一关后,可以选择得到相应的分数,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部分数都归零,游戏结束。设选手甲第一关、第二关、第三关的概率分别为,选手选择继续闯关的概率均为,且各关之间闯关成功互不影响

(I)求选手甲第一关闯关成功且所得分数为零的概率

(II)设该学生所得总分数为X,X的分布列与数学期望

【答案】(Ⅰ);(Ⅱ)见解析.

【解析】分析:(Ⅰ)设甲“第一关闯关成功且所得分数为零”为事件A,“第一关闯关成功第二关闯关失败”为事件A1,“前两关闯关成功第三关闯关失败”为事件A2,由A1,A2互斥,能求出选手甲第一关闯关成功且所得学豆为零的概率.

(Ⅱ)X所有可能的取值为0,1,3,6,分别求出相应的概率,由此能求出X的分布列和数学期望.

详解(Ⅰ)设甲第一关闯关成功且所得分数为零为事件第一关闯关成功第二关闯关失败为事件前两关闯关成功第三关闯关失败为事件,则互斥,

(Ⅱ)所有可能的取值为0,1,3,6

所以,的分布列为:

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网