题目内容
已知数列{an}的前n项和为Sn,设an是Sn与2的等差中项,数列{bn}中,b1=1,bn+1=bn+2.
(1)求an,bn;
(2)若数列{bn}的前n项和为Bn,比较
+
+…+
与2的大小;
(3)令Tn=
+
+…+
,是否存在正整数M,使得Tn<M对一切正整数n都成立?若存在,求出M的最小值;若不存在,请说明理由.
(1)求an,bn;
(2)若数列{bn}的前n项和为Bn,比较
| 1 |
| B1 |
| 1 |
| B2 |
| 1 |
| Bn |
(3)令Tn=
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
分析:(1)由题意可得2an=Sn+2,故可得2an+1=Sn+1+2,两式相减可得数列{an}是2为首项,2为公比的等比数列,又数列{bn}是1为首项,2为公差的等差数列,可得它们的通项公式;
(2)可的Bn=n2,故
+
+…+
=
+
+…+
,由放缩法和裂项相消法可得结论;
(3)可得Tn=
+
+…+
,由错位相减法可得可得Tn=3-
-
<3,可得结论.
(2)可的Bn=n2,故
| 1 |
| B1 |
| 1 |
| B2 |
| 1 |
| Bn |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| n2 |
(3)可得Tn=
| 1 |
| 2 |
| 3 |
| 22 |
| 2n-1 |
| 2n |
| 1 |
| 2n-2 |
| 2n-1 |
| 2n+1 |
解答:解:(1)由题意可得2an=Sn+2,故可得2an+1=Sn+1+2,
两式相减可得2an+1-2an=Sn+1-Sn=an+1,即an+1=2an,
又可得2a1=S1+2=a1+2,解得a1=2,
故数列{an}是2为首项,2为公比的等比数列,
故an=2•2n-1=2n,
又b1=1,bn+1=bn+2,
所以数列{bn}是1为首项,2为公差的等差数列,
故bn=1+2(n-1)=2n-1
(2)由(1)可知Bn=
=n2,
故
+
+…+
=
+
+…+
<1+
+
+…+
=1+(1-
)+(
-
)+(
-
)
=2-
<2
(3)可得Tn=
+
+…+
=
+
+…+
,
∴
Tn=
+
+…+
两式相减可得
Tn=
+2(
+
+…+
)-
=
+2×
-
,
化简可得Tn=3-
-
<3,
又T1=
,Tn单调递增,
∴Tn∈[
,3),故M的最小值为3
两式相减可得2an+1-2an=Sn+1-Sn=an+1,即an+1=2an,
又可得2a1=S1+2=a1+2,解得a1=2,
故数列{an}是2为首项,2为公比的等比数列,
故an=2•2n-1=2n,
又b1=1,bn+1=bn+2,
所以数列{bn}是1为首项,2为公差的等差数列,
故bn=1+2(n-1)=2n-1
(2)由(1)可知Bn=
| n(1+2n-1) |
| 2 |
故
| 1 |
| B1 |
| 1 |
| B2 |
| 1 |
| Bn |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| n2 |
<1+
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| (n-1)n |
=1+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
=2-
| 1 |
| n |
(3)可得Tn=
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
| 1 |
| 2 |
| 3 |
| 22 |
| 2n-1 |
| 2n |
∴
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 2n-1 |
| 2n+1 |
两式相减可得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 2n-1 |
| 2n+1 |
=
| 1 |
| 2 |
| ||||
1-
|
| 2n-1 |
| 2n+1 |
化简可得Tn=3-
| 1 |
| 2n-2 |
| 2n-1 |
| 2n+1 |
又T1=
| 1 |
| 2 |
∴Tn∈[
| 1 |
| 2 |
点评:本题考查数列的求和,涉及裂项相消法和错位相减法求和,以及放缩法的应用,属中档题,
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |