题目内容

若函数f(x)=e-(x-u)2(e是自然对数的底数)的最大值是m,且f(x)是偶函数,则m+μ=
 
分析:由f(x)是偶函数可知f(-1)=f(1),代入可求u=0,所以f(x)=e-x2,所以当x=0时函数f(x)取得最大值,从而可求.
解答:解:∵f(x)是偶函数,
∴f(-1)=f(1),
∴u=0
∴f(x)=e-x2
∴当x=0时函数f(x)取得最大值,且最大值为1,
∴m+μ=1.
故答案为:1.
点评:本题主要考查函数的奇偶性问题.另外涉及到指数函数的最值问题,这在考试中经常遇到.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网