题目内容
若f(x)在R上是奇函数,且在(0,+∞)上是增函数,又f(-3)=0,则x•[f(x)-f(-x)]<0的解集是( )
A.(-3,0)∪(3,+∞) | B.(-∞,-3)∪(0,3) | C.(-∞,-3)∪(3,+∞) | D.(-3,0)∪(0,3) |
由题设f(x)在R上是奇函数,且在(0,+∞)上是增函数,又f(-3)=0,
∴f(3)=0,且f(x)在(-∞,0)上是增函数,即f(x)在(-∞,-3)上小于0,在(-3,0)上大于0,在(0,3)上小于0,在(3,+∞)大于0.
又x•[f(x)-f(-x)]<0,即x与[f(x)-f(-x)]的符号相反,
∴x•[f(x)-f(-x)]<0的解集是(-3,0)∪(3,+∞)
故选A.
∴f(3)=0,且f(x)在(-∞,0)上是增函数,即f(x)在(-∞,-3)上小于0,在(-3,0)上大于0,在(0,3)上小于0,在(3,+∞)大于0.
又x•[f(x)-f(-x)]<0,即x与[f(x)-f(-x)]的符号相反,
∴x•[f(x)-f(-x)]<0的解集是(-3,0)∪(3,+∞)
故选A.
练习册系列答案
相关题目