题目内容
(2012•广东)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
分数段 | [50,60) | [60,70) | [70,80) | [80,90) |
x:y | 1:1 | 2:1 | 3:4 | 4:5 |
分析:(1)由频率分布直方图的性质可10(2a+0.02+0.03+0.04)=1,解方程即可得到a的值;
(2)由平均数加权公式可得平均数为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05,计算出结果既得;
(3)按表中所给的数据分别计算出数学成绩在分数段的人数,从总人数中减去这些段内的人数即可得出数学成绩在[50,90)之外的人数.
(2)由平均数加权公式可得平均数为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05,计算出结果既得;
(3)按表中所给的数据分别计算出数学成绩在分数段的人数,从总人数中减去这些段内的人数即可得出数学成绩在[50,90)之外的人数.
解答:解:(1)依题意得,10(2a+0.02+0.03+0.04)=1,解得a=0.005
(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分)
(3)数学成绩在[50,60)的人数为:100×0.05=5
数学成绩在[60,70)的人数为:100×0.4×
=20
数学成绩在[70,80)的人数为:100×0.3×
=40
数学成绩在[80,90)的人数为:100×0.2×
=25
所以数学成绩在[50,90)之外的人数为:100-5-20-40-25=10.
(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分)
(3)数学成绩在[50,60)的人数为:100×0.05=5
数学成绩在[60,70)的人数为:100×0.4×
1 |
2 |
数学成绩在[70,80)的人数为:100×0.3×
4 |
3 |
数学成绩在[80,90)的人数为:100×0.2×
5 |
4 |
所以数学成绩在[50,90)之外的人数为:100-5-20-40-25=10.
点评:本题考查频率分布估计总体分布,解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解
练习册系列答案
相关题目