题目内容

【题目】已知函数f(x)=log2(m+)(m∈R,且m>0).
(1)求函数f(x)的定义域;
(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.

【答案】解:(1)由m+>0,(x﹣1)(mx﹣1)>0,
∵m>0,
∴(x﹣1)(x﹣)>0,
>1,即0<m<1时,x∈(﹣∞,1)∪(,+∞);
=1,即m=1时,x∈(﹣∞,1)∪(1,+∞);
<1,即m>1时,x∈(﹣∞,)∪(1,+∞).
(2)若函数f(x)在(4,+∞)上单调递增,则函数g(x)=m+在(4,+∞)上单调递增且恒正.
所以
解得:
【解析】(1)对数函数要有意义,必须真数大于0,即m+>0,这是一个含有参数的不等式,故对m分情况进行讨论;
(2)根据复合函数单调性的判断法则,因为y=log2u是增函数,要使得若函数f(x)在(4,+∞)上单调递增,则函数u=m+在(4,+∞)上单调递增且恒正,据些找到m满足的不等式,解不等式即得m的范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网