题目内容

在△ABC中,角A、B、C所对的边分别为a,b,c,已知向量m=(a,3b-c),n=(cosA,cosC),满足m∥n,
(Ⅰ)求cosA的大小;
(Ⅱ)求sin2
B+C
2
-2sin(A-
π
4
)sin(A+
π
4
)
的值.
分析:(Ⅰ)根据平面向量平行的性质求得acosC=(3b-c)cosA,利用两角和的公式对其进行化简,求得cosA的值.
(Ⅱ)先利用二倍角公式和两角和公式对原式化简整理,把(1)中求得cosA求得代入即可求得答案.
解答:解:(Ⅰ)由
m
n
得acosC=(3b-c)cosA,
由正弦定理得sinAcosC=(3sinB-sinC)cosA,
即sinAcosC+sinCcosA=3sinBcosA,
∴sin(A+C)=3sinBcosA,
∵△ABC中,A+C=π-B,
∴sin(π-B)=3sinBcosA,
即sinB=3sinBcosA
∵B∈(0,π)sinB≠0,
∴cosA=
1
3

(Ⅱ)sin2
B+C
2
-2sin(A-
π
4
)sin(A+
π
4
)

=sin2
π-A
2
-2(
2
2
sinA-
2
2
cosA)(
2
2
sinA+
2
2
cosA)

=cos2
A
2
-(sin2A-cos2A)

=
1+cosA
2
+2cos2A-1

=
1+
1
3
2
+2(
1
3
)2-1

=-
1
9
点评:本题主要考查了正弦定理的应用,二倍角公式和两角和公式化简.考查了考生综合分析问题的能力和基础知识的综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网