题目内容
.(本小题满分12分)
已知函数,是常数)在x=e处的切线方程为,既是函数的零点,又是它的极值点.
(1)求常数a,b,c的值;
(2)若函数在区间(1,3)内不是单调函数,求实数m的取值范围;
(3)求函数的单调递减区间,并证明:
【答案】
(1) ,, (2) (3) , 证明:当时, 即对一切都成立,亦即对一切都成立, 所以,,,…, 所以有,
所以.
【解析】
试题分析:(1)由知,的定义域为,,
又在处的切线方程为,所以有
,①
由是函数的零点,得,②
由是函数的极值点,得,③
由①②③,得,,.
(2)由(1)知,
因此,,所以
.
要使函数在内不是单调函数,则函数在内一定有极值,而
,所以函数最多有两个极值.
令.
(ⅰ)当函数在内有一个极值时,在内有且仅有一个根,即
在内有且仅有一个根,又因为,当 ,即时,在内有且仅有一个根
,当时,应有,即,解得,所 以有.
(ⅱ)当函数在内有两个极值时,在内有两个根,即二次函
数在内有两个不等根,所以
解得.
综上,实数的取值范围是.
(3)由,得,
令,得,即的单调递减区间为.
由函数在上单调递减可知,
当时, ,即,
亦即对一切都成立,
亦即对一切都成立,
所以,
,
,
…
,
所以有,
所以.
考点:函数导数的几何意义及利用函数的导数判定单调性求极值
点评:本题第一问题型基础简单,第二问需要分情况讨论,对学生有一定的难度,第三问需要借助于单调性求出最值进而转化为恒成立的不等式,难度大
练习册系列答案
相关题目