题目内容
【题目】如图,将直角△ABC沿着平行BC边的直线DE折起,使得平面A′DE⊥平面BCDE,其中D、E分别在AC、AB边上,且AC⊥BC,BC=3,AB=5,点A′为点A折后对应的点,当四棱锥A′-BCDE的体积取得最大值时,求AD的长.
【答案】
【解析】试题分析:由勾股定理易得AC=4,设AD=x,则CD=4﹣x.由△AED∽△ABC,得,求出四棱锥A′﹣BCDE的体积V(x)=(0<x<4),由此利用导数性质能求出结果.
试题解析:
由勾股定理得AC=4,设AD=x,则CD=4-x.
因为△AED∽△ABC,所以,
则四棱锥A′-BCDE的体积为: ,
所以,
当时,V′(x)>0,V(x)递增;
当时,V′(x)<0,V(x)递减.
故,
故时,V(x)取得最大值.
【题目】由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为x)
组别 | 步数分组 | 频数 |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
(Ⅰ)写出m,n的值,若该“微信运动”团队共有120人,请估计该团队中一天行走步数不少于7500步的人数;
(Ⅱ)记C组步数数据的平均数与方差分别为v1, ,E组步数数据的平均数与方差分别为v2, ,试分别比较v1与v2, 与的大小;(只需写出结论)
(Ⅲ)从上述A,E两个组别的步数数据中任取2个数据,求这2个数据步数差的绝对值大于3000步的概率.