题目内容
已知
,
,其中
,若函数
,且函数
的图象与直线y=2两相邻公共点间的距离为
.
(l)求
的值;
(2)在△ABC中,以a,b,c(分别是角A,B,C的对边,且
,求△ABC周长的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253015941225.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301610986.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301610418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301626710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301641495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301657313.png)
(l)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301672310.png)
(2)在△ABC中,以a,b,c(分别是角A,B,C的对边,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301688721.png)
(1)
;(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301719367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301735689.png)
试题分析:(1)先根据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301626710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253017501281.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301766291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301641495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301797426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301938309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301938626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301953308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301719367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301641495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253020001209.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302016555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302031529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302047530.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302062871.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253020621059.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302078497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253020941330.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253021091276.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302125309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302140808.png)
试题解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301626710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253021721856.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253021871103.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302203847.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253022181072.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301610418.png)
∴函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301641495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302265735.png)
∵函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301641495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302296424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301657313.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302312495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301719367.png)
(2)由(Ⅰ)可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301719367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253020001209.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302016555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253024061052.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253024211056.png)
又∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302031529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302452907.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302468749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302047530.png)
由正弦定理得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302484805.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025302499550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253025152002.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253025301741.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253025461118.png)
所以三角形周长的取值范围是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025301735689.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目