题目内容

5.已知球的半径为R,球内接圆柱的底面半径为r,高为h,则r和h为何值时,内接圆柱的体积最大?

分析 本题考查的知识点是棱柱、棱锥、棱台的体积,为求出圆柱体积最大时的底面半径,我们可以设圆柱体的底面半径为r,进而根据截面圆半径、球半径、球心距满足勾股定理,可得R2=r2+$\frac{{h}^{2}}{4}$,进而得到其体积的表达式,然后结合基本不等式,即可得到圆柱体积最大时的底面半径的值.

解答 解:设圆柱体的底面半径为r,高为h,则R2=r2+$\frac{{h}^{2}}{4}$,
∴R2=r2+$\frac{{h}^{2}}{4}$=$\frac{1}{2}$r2+$\frac{1}{2}$r2+$\frac{{h}^{2}}{4}$≥3$\root{3}{\frac{1}{16}{r}^{4}{h}^{2}}$,
∴r2h≤$\frac{4}{9}\sqrt{3}{R}^{3}$
∴圆柱的体积V=πr2h≤$\frac{4}{9}\sqrt{3}π{R}^{3}$
当且仅当r2=$\frac{1}{2}$h2,即h=$\frac{2\sqrt{3}}{3}$R,r=$\frac{\sqrt{6}}{3}$R时,V取最大值$\frac{4}{9}\sqrt{3}π{R}^{3}$.

点评 若球的截面圆半径为r,球心距为d,球半径为R,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,即R2=r2+d2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网