题目内容
设函数f(x)对x≠0的任意实数,恒有f(x)-2f(
)=x2+1成立.
(1)求函数f(x)的解析式;
(2)用函数单调性的定义证明函数f(x)在(0,
]上是增函数.
| 1 |
| x |
(1)求函数f(x)的解析式;
(2)用函数单调性的定义证明函数f(x)在(0,
| 4 | 2 |
分析:(1)由f(x)-2f(
) =x2+1,得f(
) -2f(x)=
+1,由此能求出函数f(x)的解析式.
(2)任取0<x1<x2≤
.f(x1) -f(x2) =-
(x12+
)+
(x22+
)=
(x22-x12)•
,由0<x1<x2≤
,得
(x22-x12)•
<0,由此能够证明f(x)在(0,
]上是增函数.
| 1 |
| x |
| 1 |
| x |
| 1 |
| x2 |
(2)任取0<x1<x2≤
| 4 | 2 |
| 1 |
| 3 |
| 2 |
| x12 |
| 1 |
| 3 |
| 2 |
| x22 |
| 1 |
| 3 |
(x1x2+
| ||||
| x12x22 |
| 4 | 2 |
| 1 |
| 3 |
(x1x2+
| ||||
| x12x22 |
| 4 | 2 |
解答:(1)解:由f(x)-2f(
) =x2+1,①
得f(
) -2f(x)=
+1,②(2分)
①+②×②,得-3f(x)=x2+
+3.
∴f(x)=-
(x2+
)-1.(4分)
(2)证明:任取0<x1<x2≤
.(6分)
f(x1) -f(x2) =-
(x12+
)+
(x22+
)
=
[(x22-x12)+
]
=
(x22 -x12)(1-
)
=
(x22-x12)•
(8分)
∵0<x1<x2≤
,
∴x12<x22,0<x1x2<
.
而x1x2>0,x12x22>0,
∴
(x22-x12)•
<0.(10分)
∴f(x1)-f(x2)<0,∴f(x1)<f(x2),∴f(x)在(0,
]上是增函数.(12分)
| 1 |
| x |
得f(
| 1 |
| x |
| 1 |
| x2 |
①+②×②,得-3f(x)=x2+
| 2 |
| x2 |
∴f(x)=-
| 1 |
| 3 |
| 2 |
| x2 |
(2)证明:任取0<x1<x2≤
| 4 | 2 |
f(x1) -f(x2) =-
| 1 |
| 3 |
| 2 |
| x12 |
| 1 |
| 3 |
| 2 |
| x22 |
=
| 1 |
| 3 |
| 2(x12-x22) |
| x12x22 |
=
| 1 |
| 3 |
| 2 |
| x12x22 |
=
| 1 |
| 3 |
(x1x2+
| ||||
| x12x22 |
∵0<x1<x2≤
| 4 | 2 |
∴x12<x22,0<x1x2<
| 2 |
而x1x2>0,x12x22>0,
∴
| 1 |
| 3 |
(x1x2+
| ||||
| x12x22 |
∴f(x1)-f(x2)<0,∴f(x1)<f(x2),∴f(x)在(0,
| 4 | 2 |
点评:本题考查函数的恒成立问题,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易出错.
练习册系列答案
相关题目