题目内容
【题目】如图,在三棱柱中,侧棱底面,底面是正三角形,
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
【答案】(1)证明见解析,(2)
【解析】
(1) 在线段上取一点.使.连结.利用线段成比例定理可以证明出线线平行以及数量关系,根据平行四边形的判定定理和性质、线面平行的判定定理可以证明出本问;
(2) 以为坐标原点,所在直线分别为轴建立如图所示的空间直角坐标系,利用向量法可以求出直线与平面所成角的正弦值.
(1)证明:在线段上取一点.使.连结.
在中.因为,
所以,
所以,
所以,且,
因为.
所以,
所以且,
故四边形为平行四边形,所以,
又平面平面,
所以平面.
(2)以为坐标原点,所在直线分别为轴建立如图所示的空间直角坐标系,
因为底面是正三角形,,
所以点,
则,
设平面的法向量为.
由,
令.得平面的一个法向量为,
又,
设直线与平面BCF所成角的大小为.
则,
所以直线与平面所成角的正弦值为.
【题目】每个国家身高正常的标准是不一样的,不同年龄、不同种族、不同地区身高都是有差异的,我们国家会定期进行0~18岁孩子身高体重全国性调查,然后根据这个调查结果制定出相应的各个年龄段的身高标准.一般测量出一个孩子的身高,对照一下身高体重表,如果在平均值标准差以内的就说明你的孩子身高是正常的,否则说明你的孩子可能身高偏矮或偏高了.根据科学研究0~18岁的孩子的身高服从正态分布.在某城市随机抽取100名18岁男大学生得到其身高()的数据.
(1)记表示随机抽取的100名18岁男大学生身高的数据在之内的人数,求及的数学期望.
(2)若18岁男大学生身高的数据在之内,则说明孩子的身高是正常的.
(i)请用统计学的知识分析该市18岁男大学生身高的情况;
(ii)下面是抽取的100名18岁男大学生中20名大学生身高()的数据:
1.65 | 1.62 | 1.74 | 1.82 | 1.68 | 1.72 | 1.75 | 1.66 | 1.73 | 1.67 |
1.86 | 1.81 | 1.74 | 1.69 | 1.76 | 1.77 | 1.69 | 1.78 | 1.63 | 1.68 |
经计算得,,其中为抽取的第个学生的身高,.用样本平均数作为的估计值,用样本标准差作为的估计,剔除之外的数据,用剩下的数据估计和的值.(精确到0.01)
附:若随机变量服从正态分布,则,.