题目内容

对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点

(1)当a=2,b=-2时,求f(x)的不动点;

(2)若对于任何实数b,函数f(x)恒有两个相异的不动点,求实数a的取值范围;

(3)在(2)的条件下判断直线L:y=ax+1与圆(x-2)2+(y+2)2=4a2+4的位置关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网