题目内容
已知函数f(x)=x
的定义域是非零实数,且在(-∞,0)上是增函数,在(0,+∞)上是减函数,则最小的自然数a等于( )
1-a |
3 |
A、0 | B、1 | C、2 | D、3 |
分析:利用函数定义域为非零实数,得出指数为负数,再利用函数的单调性进一步得出指数中分子为偶数进行求解.
解答:解:∵f(x)的定义域是{x|x∈R且x≠0},
∴1-a<0,即a>1.
又∵f(x)在(-∞,0)上是增函数,在(0,+∞)上是减函数,故1-a为负偶数,
∴1-a=-2,即a=3,
故选D.
∴1-a<0,即a>1.
又∵f(x)在(-∞,0)上是增函数,在(0,+∞)上是减函数,故1-a为负偶数,
∴1-a=-2,即a=3,
故选D.
点评:本题考查函数的定义域意识,考查学生的理解和转化能力,将函数的定义域和单调性转化为指数的关系是解决本题的关键.
练习册系列答案
相关题目
已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
)的部分图象如图所示,则f(x)的解析式是( )
π |
2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|