题目内容
【题目】已知三棱锥(如图1)的平面展开图(如图2)中,四边形为边长为的正方形,,均为正三角形,在三棱锥中.
(1)求证:平面平面;
(2)若点在棱上,满足,,点在棱上,且,求得取值范围.
【答案】(1)证明见解析;(2).
【解析】
(1)设AC的中点为O,连接BO,PO,先证明PO⊥AC,PO⊥OB,可得PO⊥平面ABC,从而可得结论;(2)以OC,OB,OP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,设,求出与的坐标,令,得,化为,利用单调性可得结果.
(1)设AC的中点为O,连接BO,PO.
由题意,得PA=PB=PC=,
PO=2,AO=BO=CO=1,
∵在△PAC中,PA=PC,O为AC的中点,∴PO⊥AC,
∵在△POB中,PO=1,OB=1,PB=,
∴PO⊥OB.
∵AC∩OB=O,AC,OB平面ABC,∴PO⊥平面ABC,
∵PO平面PAC,∴平面PAC⊥平面ABC.
(2)由PO⊥平面ABC,,如图建立空间坐标系,
则,
设,则,
,
令,得,
即,是关于的单调递增函数,
当时,,
故的取值范围为.
练习册系列答案
相关题目