题目内容

已知A、B是直线l上任意两点,O是l外一点,若l上一点C满足
OC
=cosθ
OA
+cos2θ
OB
,则sin2θ+sin4θ+sin6θ=(  )
分析:根据A、B、C三点共线,结合题中向量等式得到cosθ+cos2θ=1,从而cosθ=1-cos2θ=sin2θ,由此化简得sin2θ+sin4θ+sin6θ=1+cosθ-cos2θ,再由cosθ+cos2θ=1解出cosθ和cos2θ的值,代入即可得到所求的值.
解答:解:∵A、B、C三点在同一条直线l上
∴由
OC
=cosθ
OA
+cos2θ
OB
,得cosθ+cos2θ=1
因此,cosθ=1-cos2θ=sin2θ,
∴sin2θ+sin4θ+sin6θ=cosθ+cos2θ+cos3θ
结合cosθ+cos2θ=1,
得sin2θ+sin4θ+sin6θ=1+cos3θ=1+cosθ(1-cosθ)=1+cosθ-cos2θ
由cosθ+cos2θ=1解出cosθ=
5
-1
2
,得cos2θ=
3-
5
2

∴sin2θ+sin4θ+sin6θ=1+
5
-1
2
-
3-
5
2
=-1+
5

故选:B
点评:本题给出向量含有三角函数系数的等式,求三角函数式的值.着重考查了向量的线性运算和同角三角函数基本关系等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网